how to integrate (exp(ax)exp(bx))/((exp(ax)+1)(exp(bx)+1))

 Posts: 9
 Joined: Sat Oct 01, 2011 11:21 pm
how to integrate (exp(ax)exp(bx))/((exp(ax)+1)(exp(bx)+1))
how to integrate (exp(ax)exp(bx))/((exp(ax)+1)(exp(bx)+1)) where x is from 0 to 1. i have no idea when i saw it... tks in advance!
Re: how to integrate (exp(ax)exp(bx))/((exp(ax)+1)(exp(bx)+1))
Try to use the LaTex format next time. I found this site quite helpful to edit the formulae in real time. http://www.codecogs.com/latex/eqneditor.phpcathy_liping wrote:how to integrate (exp(ax)exp(bx))/((exp(ax)+1)(exp(bx)+1)) where x is from 0 to 1. i have no idea when i saw it... tks in advance!
Well. $$\int_{0}^{1} \frac{(e^{ax}e^{bx})} {(e^{ax}+1)(e^{bx}+1)} dx = \int_{0}^{1} (\frac{e^{ax}} {(e^{ax}+1)}  \frac{e^{bx}} {(e^{bx}+1)}) dx$$
from here you can substitution $$u = e^{ax}$$ so $$du= ae^{ax} dx$$. After some manipulation, you will get $$\frac{ log(e^{ax}+1)}{a}\frac{ (e^{bx}+1)}{b}$$.
Btw, are you interested to find a study partner? I speak mandarin too.
Re: how to integrate (exp(ax)exp(bx))/((exp(ax)+1)(exp(bx)+1))
I think that you forgot to write log in the second term